Thermalization of a Strongly Interacting Closed Spin System: From Coherent Many-Body Dynamics to a Fokker-Planck Equation
Physical Review Letters 108 110603 (2012)
C. Ates, J. P. Garrahan, and I. Lesanovsky
http://dx.doi.org/10.1103/PhysRevLett.108.110603
Abstract: Thermalization has been shown to occur in a number of closed quantum many-body systems, but the description of the actual thermalization dynamics is prohibitively complex. Here, we present a model-in one and two dimensions-for which we can analytically show that the evolution into thermal equilibrium is governed by a Fokker-Planck equation derived from the underlying quantum dynamics. Our approach does not rely on a formal distinction of weakly coupled bath and system degrees of freedom. The results show that transitions within narrow energy shells lead to a dynamics which is dominated by entropy and establishes detailed balance conditions that determine both the eventual equilibrium state and the nonequilibrium relaxation to it.