Matter-wave interferometry in a double well on an atom chip

2005  Nature Physics   1   57-62 

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger

http://dx.doi.org/10.1038/nphys125

Abstract: Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of BoseEinstein condensates into two clouds separated by distances ranging from 3 to 80 mum, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving.

Print Friendly, PDF & Email
This entry was posted in Publications, UNOT - Experiment. Bookmark the permalink.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.